Wednesday, May 26, 2010

3rd Vietnam Mathematical Olympiad 1964


1.  Find cos x + cos(x + 2π/3) + cos(x + 4π/3) and sin x + sin(x + 2π/3) + sin(x + 4π/3).
2.  Draw the graph of the functions y = | x2 - 1 | and y = x + | x2 - 1 |. Find the number of roots of the equation x + | x2 - 1 | = k, where k is a real constant.
3.  Let O be a point not in the plane p and A a point in p. For each line in p through A, let H be the foot of the perpendicular from O to the line. Find the locus of H.
4.  Define the sequence of positive integers fn by f0 = 1, f1 = 1, fn+2 = fn+1 + fn. Show that fn = (an+1 - bn+1)/√5, where a, b are real numbers such that a + b = 1, ab = -1 and a > b. 



Solutions


1. Using cos(A+B) = cos A cos B - sin A sin B, we have cos(x + 2π/3) = -(1/2) cos x + (√3)/2 sin x, cos(x + 4π/3) = -(1/2) cos x - (√3)/2 sin x. Hence cos x + cos(x + 2π/3) + cos(x + 4π/3) = 0. Similarly, sin(x + 2π/3) = -1/2 sin x + (√3)/2 cos x, sin(x + 4π/3) = -1/2 sin x - (√3)/2 cos x, so sin x + sin(x + 2π/3) + sin(x + 4π/3) = 0.

2. Answer
0 for k < -1
1 for k = -1
2 for -1 < k < 1
3 for k = 1
4 for 1 < k < 5/4
3 for k = 5/4
2 for k > 5/4




It is clear from the graph that there are no roots for k < -1, and one root for k = -1 (namely x = -1). Then for k > -1 there are two roots except for a small interval [1, 1+h]. At k = 1, there are 3 roots (x = -2, 0, 1). The upper bound is at the local maximum between 0 and 1. For such x, y = x + 1 - x2 = 5/4 - (x - 1/2)2, so the local maximum is at 5/4. Thus there are 3 roots at k = 5/4 and 4 roots for k ∈ (1, 5/4).


3. Answer: circle diameter AB, where OB is the normal to p


Let B be the foot of the perpendicular from O to p. We claim that the locus is the circle diameter AB. Any line in p through A meets this circle at one other point K (except for the tangent to the circle at A, but in that case A is obviously the foot of the perpendicular from O to the line). Now BK is perpendicular to AK, so OK is also perpendicular to AK, and hence K must be the foot of the perpendicular from O to the line.

4. Put a = (1+√5)/2, b = (1-√5)/2. Then a, b are the roots of x2 - x - 1 = 0 and satisfy a + b = 1, ab = -1. We show by induction that fn = (an+1 - bn+1)/√5. We have f0 = (a-b)/√5 = 1, f1 = (a2-b2)/√5 = (a+1 - b-1)/√5 = 1, so the result is true for n = 0, 1. Finally, suppose fn = (an+1 - bn+1)/√5 and fn+1 = (an+2 - bn+2)/√5. Then fn+2 = fn+1 + fn = (1/√5)(an+1(a+1) - bn+1(b+1) ) = (an+1a2 - bn+1b2)/√5, so the result is true for n+1.

Source: http://321math.blogspot.com

1 comment:

  1. Đây là trang nhạc của các webmaster vn nhacf.com - được viết với mục đích chỉ để nghe nhạc.

    Trang nhạc trình bày đơn giản nhanh gọn chuyên nghiệp, nghe nhạc nhanh, tìm kiếm bhát dễ dàng.

    Mới chỉ có ít người biết đến. nhưng nhacf được dân lập trình đánh giá rất cao về chất lượng và cách thể hiện.

    Để làm trang web giống như nhacf.com, bạn có thể dùng blogspot để tạo & copy sourcecode của nó ở đây

    Phù hợp với ~ người có sở thích đơn giản nhanh gọn và muốn khám phá..

    ReplyDelete